M.E.(cvs)-wetenschap

november 17, 2018

Cannabinoïden voor fibromyalgie?

Filed under: Behandeling — mewetenschap @ 7:43 am
Tags: , , ,

Meer en meer fibromyalgie-patiënten (en mensen met M.E.(cvs) met een neuropathische pijn) blijken hun heil te zoeken in het gebruik van (afgeleiden van) medicinale cannabis. De weinige beschikbare wetenschappelijke informatie is dikwijls tegenstrijdig en de vele anekdotische meldingen (positief en negatief) maken het de patient niet makkelijk om zich een duidelijk beeld te vormen. Daar bovenop komt de moeilijke beschikbaarheid/illegaliteit in sommige landen…

De resultaten van al dan niet wetenschappelijke testen worden beïnvloed door de vorm/samenstelling (‘volle cannabis’ of extracten, cannabidiol (CBD)/tetrahydrocannabinol (THC) verhouding) en manier van toediening (inhaleren, inslikken, druppelen op het mondholte-slijmvlies, …). Er is dus nog veel (onderzoek)werk aan de winkel en een éénduidig antwoord op de vraag of cannabis(-afgeleiden) nuttig zijn voor de pijnbestrijding bij fibromyalgie en/of M.E.(cvs) is momenteel niet te geven. Het blijft dus (jammer genoeg) voorlopig aan de individuele patient om zelf aan het nodige materiaal te raken en via ‘trial-and-error’ te weten te komen of het haar/hem iets oplevert.

Hieronder enkele ‘abstracts’ die een richting kunnen aangeven (of niet)…

**********

Nat Rev Rheumatol. (2018) 14: 488-498

Cannabinoids for the treatment of rheumatic diseases – where do we stand?

Katz-Talmor D1,2, Katz I1,3, Porat-Katz BS1,4, Shoenfeld Y5,6

1 Zabludowicz Centre for Autoimmune Diseases, Sheba Medical Centre, Tel Hashomer, Israel

2 Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel

3 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

4 Robert H. Smith Faculty of Agriculture, Food and Environment, School of Nutritional Sciences, Hebrew University of Jerusalem, Rehovot, Israel

5 Zabludowicz Centre for Autoimmune Diseases, Sheba Medical Centre, Tel Hashomer, Israel

6 Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel

Samenvatting

Aangezien het medisch gebruik van cannabis wereldwijd meer en meer gelegaliseerd raakt, is een beter begrip van de medische en gevaarlijke effekten van dit medicijn dringend noodzakelijk. De pijn die met reumatische ziekten gepaard gaat, wordt in verscheidene landen als een veel voorkomende indicatie beschouwd voor medicinale cannabis. Tot hier toe hebben preliminaire klinische testen de effekten van cannabis onderzocht bij Reumatoïde Artritis, osteoartritis en fibromyalgie; preliminair bewijsmateriaal vond ook een associatie tussen het cannabinoïden systeem en andere reumatische aandoeningen, inclusief systemische sclerose en juveniele idiopathische artritis. De potentieel medicinale effekten van cannabis zouden kunnen worden toegeschreven aan de invloed op het immuunsysteem, aangezien het een immunomodulerend effekt uitoefent op verscheidene immuun-cellen, inclusief T-cellen, B-cellen en macrofagen. Het beschikbaar bewijsmateriaal is echter nog niet voldoende om de aanbeveling van behandeling met cannabinoïden voor reumatische ziekten te ondersteunen.

————————-

Medwave (2018) 18: e7154

Are cannabinoids effective for fibromyalgia?

Rocco M1, Rada G2

1 Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Proyecto Epistemonikos, Santiago, Chile

2 Proyecto Epistemonikos, Santiago, Chile; Departamento de Medicina Interna, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro Evidencia UC, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; The Cochrane Collaboration; GRADE working group

Samenvatting

INLEIDING: Cannabinoïden werden voorgesteld als een therapeutisch alternatief voor fibromyalgie. Hun klinische doeltreffendheid is echter nog onderwerp van discussie.

METHODES: Om deze vraag te beantwoorden, gebruikten we Epistemonikos, de grootste database voor systematische gezondheid-‘reviews’, die wordt onderhouden door het screenen van meerdere informatie-bronnen, inclusief o.a. MEDLINE, EMBASE & Cochrane. We haalden gegevens uit de systematische overzichten, her-analyseerden gegevens van primaire studies en genereerden een samenvatting van de bevindingen.

RESULTATEN & BESLUITEN: We identificeerden 15 systematische ‘reviews’, inclusief 2 gerandomiseerde proeven. We besloten dat het niet duidelijk is of cannabinoïden enig nut hebben bij fibromyalgie omdat de zekerheid van het bewijsmateriaal zeer laag is. Aan de andere kant, worden ze geassocieerd met frequente bijwerkingen.

————————-

J Clin Rheumatol. (2018) 24: 255-258

Medical Cannabis for the Treatment of Fibromyalgia

Habib, George, MD, MPH*†‡; Artul, Suheil, MD§

* Rheumatology Unit, Laniado Hospital, Netanya

† Faculty of Medicine, Technion, Israel Institute of Technology, Haifa

‡ Rheumatolgy Clinic and §Department of Radiology, Nazareth Hospital, Nazareth Hospital, Nazareth

∥ Galilee Faculty of Medicine, Bar Ilan University, Ramat Gan, Israel

Samenvatting

ACHTERGROND: Fibromyalgie is een chronische pijn syndroom, gekenmerkt door chronische musculoskeletale pijn, vermoeidheid en stemming-stoornissen. Er zijn bijna geen gegevens over het effekt van medische cannabis (MC) op patiënten met fibromyalgie.

METHODES: Er werden gegevens verkregen van 2 ziekenhuizen in Israël over patiënten met een diagnose van fibromyalgie die werden behandeld met MC. Na toestemming van de patiënten werden demografische, klinische en laboratorium-parameters gedocumenteerd. Alle patiënten vulden ook de ‘Revised Fibromyalgia Impact Questionnaire’ in voor de periode vóór en na MC-behandeling.

RESULTATEN: Er werden 30 patiënten geïdentificeerd en 26 patiënten werden opgenomen in de studie. Er waren 19 vrouwelijke patiënten (73%) en de gemiddelde leeftijd van de studie-groep was 37,8 ± 7,6 jaar. De gemiddelde dosis MC was 26 ± 8,3 g per maand [roken], en de gemiddelde duur van het gebruik was 10,4 ± 11,3 maanden. Na het opstarten van de MC-behandeling rapporteerden alle patiënten een significante verbetering wat betreft elke parameter van de vragenlijst en 13 patiënten (50%) stopten met het innemen van andere medicatie voor fibromyalgie. Acht patiënten (30%) ervaarden matig nadelige effekten.

BESLUITEN: Behandeling met medische cannabis had een significant gunstig effekt bij patiënten met fibromyalgie, met weinig nadelige effekten.

————————-

Schmerz (2018) 32: 327-329

A weakly negative recommendation is not an absolute ‘no’ – Comment on AWMF guideline recommendations for cannabis-based medicines in fibromyalgia syndrome

Häuser W1,2, Petzke F3, Nothacker M4.

1 Innere Medizin, Klinikum Saarbrücken GmbH, Deutschland

2 MVZ für Schmerzmedizin und seelische Gesundheit Saarbrücken, Deutschland

3 Schmerzmedizin, Klinik für Anästhesiologie, Universitätsmedizin Göttingen, Deutschland

4 AWMF-Geschäftsstelle, Berlin, Deutschland

[Artikel in het Duits]

[…]

De auteurs ervaren een groot aantal afwijzing-percentages voor terugbetaling voor medicinale cannabis bij ernstige aandoeningen. Als argumentatie voor weigeringen bij patiënten met het fibromyalgie-syndroom wordt aangehaald: Geen ernstige ziekte; symptomen zijn onschadelijk in de zin van een normale levensverwachting; de patiënten kunnen de symptomen door middel van aktiviteiten verlichten” & “wetenschappelijk advies is dat cannabinoïden niet moeten worden aanbevolen”.

Vertegenwoordigers van de Duitse vereniging voor pijn-geneeskunde zijn tegen deze afkeuringen en vindt de richtlijnen te categorisch negatief. Enkele studie-resultaten werden geherwaardeerd. Bv. de studie door Skrabek RQ et al. (Nabilone for the treatment of pain in fibromyalgia. J Pain (2008) 9: 164-173): “de volledig synthetische THC-analoog nabilon (bootst THC na) werd via dubbel-blind, placebo-gecontroleerd en gerandomiseerd onderzoek bij 40 patiënten met fibromyalgie als doeltreffend bewezen”. Daartegenover staat het besluit van een ‘Cochrane Database of Systematic Reviews’ analyse uit 2016 (Walitt B et al.): “We vonden geen overtuigend, onbevooroordeeld hoge-kwaliteit bewijs dat nabilon waardevol zou zijn voor mensen met fibromyalgie.”.

[…]

Als conclusie voor de praktijk wordt geopperd dat besprekingen om consistente en wetenschappelijk geldige criteria vast te stellen voor het beoordelen van de kosten van op cannabis gebaseerde medicijnen nuttiger zijn dan het propageren van misvattingen en verkeerde interpretaties van individuele onderzoek-resultaten; ook om het risico op overdreven klinische hoop van op cannabis-gebaseerde medicijnen te relativeren.

Advertenties

november 3, 2018

Gliale aktivatie in de hersenen bij fibromyalgie

Filed under: Neurologie — mewetenschap @ 6:37 pm
Tags: , , , , , , ,

Een aantal jaren geleden gaven we hier al de mogelijkheid aan dat gliale cellen een rol zouden kunnen spelen bij M.E.(cvs). In een overzicht-artikel (zie ‘Gliale aktivatoren: doelwit voor de behandeling van centrale sensitisatie (chronische pijn)?’) suggereerden Jo Nijs en collega’s mogelijke triggers voor gliale aktiviteit die kunnen resulteren in centrale sensitisatie en chronische pijn. Een studie door Japanese onderzoekers had al bewijs geleverd dat er neuro-inflammatie aanwezig is in wijdverspreide hersen-gebieden bij M.E.(cvs)-patiënten (zie ‘Neuro-inflammatie bij Myalgische Encefalomyelitis (CVS) – een PET-studie’).

De groep van Marco Loggia (‘Pain Neuroimaging Lab’ van de ‘Harvard Medical School’ in Boston) bestudeerde de waarden van het translocator-proteïne (TSPO), een merker voor gliale aktivatie, in de hersenen (via positron-emissie-tomografie) bij patiënten met chronische lage-rug pijn (zie ‘Bewijs voor gliale aktivatie in de hersenen bij chronische pijn’). Dit onderzoek werd nu uitgebreid naar fibromyalgie – een aandoening gepaard met chronische pijn en overlappend met M.E.(cvs). Aangezien Zweedse researchers (van het ‘Karolinska Institute’ in Stockholm) met hetzelfde bezig waren, werden de krachten gebundeld. Een andere groep heeft overigens ook al bewijsmateriaal voor neuro-inflammatie bij fibromyalgie (FM) gevonden (zie ‘Systemische inflammatie & neuro-inflammatie bij fibromyalgie’).

Voor onderstaande studie werden dus patiënten van 2 geografisch verschillende plaatsen gecombineerd en er werd ook geprobeerd uit te zoeken welke van de verschillende gliale cel types (microglia of astrocyten) verantwoordelijk zouden kunnen zijn voor de neuro-inflammatie. De gegevens wijzen aan dat microglia wellicht verantwoordelijk zijn voor de TSPO-verhoging. Ook het hersengebied dat er uit sprong (de cingulate cortex) bleek hetzelfde als bij de Japanese studie.

Jarred Younger, de man van Lage Dosis Naltrexon (o.a.), beoordeelt inflammatie in de hersenen van mensen met M.E.(cvs) via ‘heat-mapping’ (niet-invasieve manier – magnetische resonantie spectroscopische thermometrie – om de temperatuur van het brein in kaart te brengen) en test mogelijke behandelingen (molekulen die gliale cel aktivatie kunnen inhiberen zoals bv. dextromethorfan). Hij meldde ook al dat dit deel van de hersenen een centrale kan spelen bij zowel M.E.(cvs) als FM (resultaten nog niet gepubliceerd)…

————————-

Brain Behaviour & Immunity; 2018 (pre-print)

Brain glial activation in fibromyalgia – A multi-site positron emission tomography investigation

Albrecht DS1, Forsberg A2, Sandström A3, Bergan C4, Kadetoff D5, Protsenko E6, Lampa J7, Lee YC8, Höglund CO9, Catana C10, Cervenka S11, Akeju O12, Lekander M13, Cohen G14, Halldin C15, Taylor N16, Kim M17, Hooker JM18, Edwards RR19, Napadow V20, Kosek E21, Loggia ML22

1 A.A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

2 Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden

3 Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden

4 A.A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

5 Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Centre, Stockholm, Sweden

6 A.A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

7 Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden

8 Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States; Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States

9 Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden

10 A.A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

11 Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden

12 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

13 Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden

14 Department of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

15 Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden

16 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

17 Department of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

18 Department of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

19 Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States

20 A.A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States

21 Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Centre, Stockholm, Sweden

22 A.A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

Samenvatting

Fibromyalgie (FM) is een slecht begrepen chronische aandoening die wordt gekenmerkt door wijdverspreide musculoskeletale pijn, vermoeidheid en cognitieve problemen. Hoewel steeds meer bewijsmateriaal een rol voor neuro-inflammatie suggereert, bestaat er geen studie die direct bewijs heeft geleverd voor gliale aktivatie in de hersenen bij FM. In deze studie voerden we een Positron Emissie Tomografie (PET) studie uit gebruikmakend van [11C]PBR28, dat bindt op het translocator proteïne (TSPO) [mitochondriaal proteïne], een proteïne dat geupreguleerd is bij geaktiveerde microglia en astrocyten. Om de statistische ‘power’ en generaliseerbaarheid te vergroten, combineerden we gegevens die onafhankelijk werden verzameld in twee afzonderlijke instituten (het ‘Massachusetts General Hospital’ [MGH] & het ‘Karolinska Institutet’ [KI]). In een poging de bijdragen van verschillende gliale cel types bij FM te ontwarren, werd een kleiner staal gescand in KI met [11C]-L-deprenyl-D2 PET, waarvan wordt gedacht dat het voornamelijk het astrocytisch (maar niet microgliaal) signaal weerspiegelt. 31 FM-patiënten en 27 gezonde controles (HC) werden onderzocht d.m.v. [11C]PBR28 PET. 11 FM-patiënten en 11 HC weden gescand gebruikmakend van [11C]-L-deprenyl-D2 PET. Er werden gestandaardiseerde opname-waarden [‘standardized uptake value’ (SUV) = verhouding van de radioaktiviteit van een beeld op de totale geïnkjekteerde radioaktiviteit] – genormaliseerd t.o.v. het occipitale cortex signaal [SUVR; verhouding van de SUV van een gebied t.o.v. een referentie-gebied] en distributie-volume (VT [theoretisch volume nodig om de totale hoeveelheid toegediende molekule te bevatten zodat de concentratie die van het bloed-plasma is]) – berekend uit de [11C]PBR28 gegevens. [11C]-L-deprenyl-D2 werd gekwantificeerd […]. PET-beeldvorming van de groepen werden vergeleken en bij verschillen bekeken t.o.v. klinische variabelen. In vergelijking met HC, vertoonden FM-patiënten wijdverspreide corticale stijgingen, en geen dalingen, qua [11C]PBR28 VT & SUVR; het meest geprononceerd in de mediale en laterale wanden van de frontale en pariëtale kwabben. Er waren geen gebieden die significante groep-verschillen qua [11C]-L-deprenyl-D2 signaal vertoonden, inclusief die met een verhoogd [11C]PBR28 signaal bij de patiënten (p’s ≥ 0.53, ongecorrigeerd). De stijgingen qua [11C]PBR28 VT & SUVR waren gecorrelereerd, zowel ruimtelijk (t.t.z. werden gezien in overlappende gebieden) en, in meerdere gebieden, ook in termen van grootte-orde. In verkennende, ongecorrigeerde analyses bleken hogere subjectieve scores voor vermoeidheid van de FM-patiënten geassocieerd met gestegen [11C]PBR28 SUVR in de anterieure en posterieure middelste cingulate cortexen (p’s < 0.03). SUVR was niet significant geassocieerd met enige andere klinische variabele. Ons werk levert het eerste in vivo bewijs ter ondersteuning van een rol voor gliale aktivatie bij FM-pathofysiologie. Gezien het feit dat de stijgingen qua [11C]PBR28 signaal niet vergezeld gingen met een verhoogd [11C]-L-deprenyl-D2 signaal, suggereren onze gegevens dat microglia, maar niet astrocyten, wellicht voor de TSPO-verhoging in deze gebieden zorgen. Hoewel [11C]-L-deprenyl-D2 signalen niet gestegen bleken bij FM-patiënten, zijn grotere studies nodig om verder de rol te bepalen van mogelijke astrocytische bijdrage tot FM. Globaal ondersteunen onze gegevens gliale modulatie als een potentieel therapeutische strategie bij FM.

[Omwille van de techniciteit van de studie beperken we ons tot de bespreking.]

Bespreking

De huidige studie levert bewijsmateriaal aangaande verhoogde TSPO-binding, gemeten via [11C]PBR28 PET, bij patiënten met fibromyalgie (FM) in vergelijking met gezonde controles (HC). Deze merker voor gliale aktivatie was gestegen in meerdere hersen-gebieden die bij FM-pathologie betrokken bleken in eerdere beeldvorming-studies. We rapporteren ook positieve associaties tussen het TSPO PET-signaal in meerdere van deze gebieden en subjectieve vermoeidheid scores, één van de meest courante symptomen die door FM-patiënten worden gerapporteerd. Onze observaties ondersteunen een rol voor neuro-immune/gliale aktivatie bij FM-pathologie.

Deze resultaten komen overéén met een geheel aan klinische gegevens die een mogelijk verband suggereren tussen neuro-inflammatie en FM. Meerdere studies met FM-patiënten toonden verhoogde waarden van molekulen betrokken bij neurogliale signalering, zoals fractalkine [chemokine betrokken bij chronische pijn] & IL-8, in het cerebrospinaal vocht [Backryd E et al. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. J. Pain Res. (2017) 10: 515-525 /// Kadetoff D et al. Evidence of central inflammation in fibromyalgia – increased cerebrospinal fluid interleukin-8 levels. J. Neuroimmunol. (2012) 242: 33-38 /// Kosek E et al. Evidence of different mediators of central inflammation in dysfunctional and inflammatory pain – interleukin-8 in fibromyalgia and interleukin-1 beta in rheumatoid arthritis. J. Neuroimmunol. (2015) 280: 49-55]. Bovendien toonden eerdere studies een gestegen endogene opioïderge [werkend via opioïde neuropeptide systemen] tonus bij FM, die van belang kan zijn aangezien door opioïden geïnduceerde hyperalgesie geassocieerd is met gliale aktivatie. Overéénkomend met dit bewijs is het feit dat sommige farmacologische behandelingen betrokken bij het opioïden-systeem en/of met vermoedelijke inhiberende werkingen op gliale cellen van nut zijn bij FM. Een voorbeeld daarvan is lage-dosis naltrexon, een opioïde antagonist, waarvan inhibitie van de gliale aktivatie werd geopperd [onderzoek bij ratten] en die voordelige effekten bleek te hebben voor FM [Younger J & Mackey S. Fibromyalgia symptoms are reduced by low-dose naltrexone: a pilot study. Pain Med. (2009) 10: 663-672 /// Younger J et al. Effects of naltrexone on pain sensitivity and mood in fibromyalgia: no evidence for endogenous opioid pathophysiology. PloS One (2009) 4: e5180 /// zie ook ‘Gebruik van lage-dosis naltrexon (LDN) als anti-inflammatoire behandeling voor chronische pijn]. Daarnaast zijn serotonine/noradrenaline-heropname inhibitoren (SNRIs; bv. duloxetine & milnacipran [antidepressiva], enz.) bij de meest courant voorgeschreven farmacologische behandelingen voor FM, en vertonen ze een matige doeltreffendheid wat betreft het reduceren van enkele FM-symptomen. Hoewel het voornaamste werking-mechanisme van SNRIs het normaliseren van de concentraties van endogene monoamine neurotransmitters – waarvan wordt gedacht dat ze uit evenwicht zijn bij FM – is, kan een mogelijk bijkomend mechanisme gliale modulatie zijn, aangezien zowel duloxetine als milnacipran microgliale aktivatie in dieren-modellen afzwakken. Interessant: bij de gebieden die neuro-immune aktivatie vertonen in onze huidige studie was de PCC [posterieure (achterste) cingulate cortex; belangrijke kern van het ‘default mode network’ (DMN) die aktief is tijdens rust/slaap] / precuneus [‘voorwig’], een kern-gebied van het ‘default mode network’ [netwerk van hersen-gebieden die aktief zijn wanneer een individu wakker is en rust], waar veranderingen qua met pijn gerelateerde aktivatie na behandeling specifiek verband hielden met de mate van positieve klinische respons op milnacipran-behandeling bij fibromyalgie-patiënten. Er zijn verdere studies vereist om de specifieke cellulaire en molekulaire mechanismen van FM-farmacotherapieën beter te begrijpen, en de potentiële rol die gliale cel inhibitie bij hun doeltreffendheid speelt.

Het nut van TSPO als merker voor gliale aktivatie wordt ondersteund door talrijke pre-klinische en post-mortem studies. Hoewel TSPO alomtegenwoordig tot expressie komt bij veel cel-types, kan het worden gebruikt als een gevoelige merker voor gliale aktivatie in vitro omdat het dramatisch geupreguleerd is in gliale cellen in de context van een neuro-inflammatoire respons. TSPO-upregulering komt samen voor met geaktiveerde microglia en/of astrocyten bij een spectrum CZS-aandoeningen, inclusief dieren-modellen voor neuropathische pijn, dierlijke MS-modellen en menselijke MS-letsels, dieren-modellen voor Alzheimer’s en menselijk post-mortem weefsel, en vele andere. De bruikbaarheid van TSPO als merker voor gliale aktivatie wordt verder ondersteund door talrijke in vivo PET-beeldvorming studies bij mensen. In vele daarvan werd een verhoogd TSPO PET-signaal gezien in hersen-gebieden waarvan is geweten dat er gliale aktivatie optreedt. TSPO-stijgingen werden gedocumenteerd in de primaire motor-cortex bij ALS, in witte- of grijze- hersentof letsels bij MS, in amyloïd-positieve gebieden bij Alzheimer’s en in de basale ganglia bij Huntington’s. Terwijl een overvloed aan menselijke en pre-klinische studies ondersteuning bieden voor TSPO als een gliale merker, is het echter belangrijk op te merken dat niet alle studies TSPO-upreguleringen hebben gedekteerd bij neuropathologieën met een gehypothiseerde inflammatoire component. Bv.: eerder werk toonde geen verschillen qua TSPO PET-signaal bij cocaïne-afhankelijkheid en een verminderd signaal bij alkohol-afhankelijkheid. Bij patiënten met psychose, toonden initiële studies met TSPO-tracers van de eerste generatie een toename, terwijl recentere studies met radioliganden van de tweede generatie ondersteuning bieden voor een daling van de TSPO-waarden. Er is dus verder werk vereist voor een betere beoordeling van het potentieel nut van TSPO als een middel om neuro-inflammatie en de betekenis van de vastgestelde veranderingen in het TSPO-signaal in beeld te brengen, bijzonderlijk bij bepaalde pathologieën.

Daarnaast blijft, zelfs bij aandoeningen waar TSPO meer gevestigd is als een merker voor gliale aktivatie, de specifieke funktionele betekenis van de upregulering onduidelijk en een aktief onderzoeksgbebied. Talrijke pre-klinische studies tonen analgetische en anti-inflammatoire effekten van TSPO, zoals verhoogde expressie van anti-inflammatoir IL-10 en andere M2-gerelateerde microgliale genen [M2-type macrofagen geven cytokinen af die proliferatie van of naburige cellen en weefsel-herstel bevorderen], indicatief voor het feit dat wijzigingen qua TSPO-expressie mogelijks een adaptieve respons op een homeostatische belasting zijn. In vitro studies bij mensen suggereren ook dat immuniteit-belastingen TSPO-upregulering induceren in anti-inflammatoire M2-achtige macrofagen, en TSPO-daling in inflammatoire M1-achtige macrofagen. We documenteerden eerder significant hogere IL-10 concentraties in het cerebrospinaal vocht en andere anti-inflammatoire cytokinen bij FM-patiënten, in tegenstelling tot een meer klassiek (M1-achtig) pro-inflammatoir cytokine-profiel in het cerebrospinaal vocht bij patiënten met Reumatoïde Artritis. Alles tesamen suggereren deze observaties dat het gestegen [11C]PBR28 PET-signaal bij FM-patiënten de weerspiegeling is van een M2-achtig gliaal fenotype, hoewel dit speculatief blijft in afwezigheid van PET-tracers met een hogere mate van fenotype-specificiteit.

Zoals hierboven vermeld kan gestegen TSPO tijdens een neuro-inflammatoire respons samen voorkomen met zowel microglia als astrocyten, afhankelijk van de specifieke omstandigheden. De exacte cellulaire bijdragen van deze gliale subtypes aan het TSPO PET-signaal zijn als zodanig onzeker. Om de cellulaire specificiteit van de TSPO-verhogingen die werden gezien in deze studie op te helderen, werd een kleiner staal FM-patiënten – gedeeltelijk overlappend met het staal dat werd gescand met [11C]PBR28 – geëvalueerd met [11C]-L-deprenyl-D2 om de waarden van MAO-B [monoamine-oxidase B; enzyme met een belangrijke rol bij het katabolisme van neuro-aktieve en vaso-aktieve amines in het centraal zenuwstelsel en perifere weefsels] in de hersenen te kwantificeren. Er wordt gedacht dat de expressie van dit proteïne in gliale cellen overwegend, misschien zelfs exclusief, in astrocyten is – met weinig of geen bijdrage door monocyten of microglia. Bv.: MAO-B upregulering bleek samen voor te komen met reaktieve astrocyten in post-mortem weefsels van patiënten met Alzheimer’s & ALS, aandoeningen die ook stijgingen qua [11C]-L-deprenyl-D2 PET-signaal vertonen. Omdat we in onze huidige studie geen groep-verschillen zagen qua [11C]-L-deprenyl-D2 binding, suggereren onze gegevens dat verhoogd [11C] PBR28 signaal bij FM-patiënten zou kunnen worden bepaald door geaktiveerde microglia i.p.v. door astrocyten. Bovendien suggereert het gebrek aan groep-verschillen qua [11C]-L-deprenyl-D2 signaal in enige andere anatomisch gedefinieerde hersen-gebieden, inclusief de totale hersenen en grijze-hersenstof, dat astrocyten-aktivatie niet relevant kan zijn voor de FM-pathofysiologie.

Overéénkomstig met onze huidige bevindingen van verhoogd TSPO PET-signaal bij FM-patiënten, hebben we eerder TSPO-stijgingen in de hersenen bij patiënten met een andere pijn-aandoening, chronische lage-rug pijn, gerapporteerd [Loggia M et al. Evidence for brain glial activation in chronic pain patients. Brain (2015) 138 (3): 604-615]. In deze studie zagen we een verschillend ruimtelijk patroon van gliale aktivatie dat gelokaliseerd was in de thalamus en gebieden van de somato-sensorische [dat de zintuigelijke informatie komende van het lichaam-oppervlak en diepere weefsels (spieren, pezen en gewrichten) ontvangt/verwerkt] en motor-cortexen, consistent met de somatotope afbeelding [overéénkomst van een lichaamsgebied met een specifiek punt in het centraal zenuwstelsel] van de rug en benen, gebieden waar deze deelnemers pijn voelden. Bij de FM-patiënten zagen we daarentegen een patroon dat meer ruimtelijk uitgebreid was, en enkel corticale gebieden besloeg. De grotere corticale verspreiding van neuro-inflammatie bij FM-patiënten vergeleken met patiënten met chronische lage-rug pijn kan een weerspiegeling zijn van de verschillen qua klinische presentatie van deze 2 patiënten-groepen, aangezien de eerste meer wijdverspreide pijn, en een hogere incidentie van cognitieve problemen en affectieve co-morbiditeiten rapporteren. Opmerkenswaardig: de meerderheid van FM-patiënten rapporteren ook lage-rug pijn maar, anders dan in onze eerdere [11C]PBR28 studie, zagen we geen statistisch significante verhogingen qua TSPO PET-signaal in de thalamus bij FM; wat suggereert dat gelijkaardige pijn-symptomen in de2 aandoeningen door afzonderlijke mechanismen kunnen worden gemedieerd. Aan de andere kant bleek het TSPO PET-signaal in de cingulate cortex, wat bij onze FM-patiënten geassocieerd was met vermoeidheid-scores, gestegen bij bij patiënten met Chronische Vermoeidheid Syndroom/ Myalgische Encefalomyelitis (CVS/M.E.) [Nakatomi Y et al. Neuroinflammation in patients with Chronic Fatigue Syndrome/ Myalgic Encephalomyelitis: an (1)(1)C-(R)-PK11195 PET study. J. Nucl. Med. (2014) 55: 945-950], suggererend dat gliale aktivatie in dit gebied een potentieel mechanisme kan zijn dat aan de basis ligt van onderliggende pathologische vermoeidheid bij verschillende aandoeningen.

Belangrijk: onze resultaten toonden dat een verhoogd [11C]PBR28 signaal bij FM, dat initieel werd geïdentificeerd in de hoofd-analyse die gegevens van 2 verschillende lokaties (KI+MGH) combeerde, kon worden gezien voor elke plaats afzonderlijk in de follow-up analyses. De reproduceerbaarheid van de effekten op verschillende plaatsen versterkt de betrouwbaarheid betreffende de sterkte van onze observaties. We merkten echter ook dat de effekt-groottes voor de gegevens van de KI dataset globaal groter waren in vergelijking met deze van MGH. Dit verschil in grootte van de groep-verschillen kan het resultaat zijn van meerdere factoren, inclusief verschillende beeldvorming (andere PET-scanners, methodologie, tracer-injektie parameters, tracer-synthese, enz.). Daarnaast hadden patiënten van het KI significant hogere scores voor meerdere items van de ACR [American College of Rheumatology] diagnostisch criteria [fibromyalgie], inclusief symptoom-ernst en moeilijkheden om helder te denken, en namen ze minder medicatie.

Ten slotte zagen we een overlap qua ruimtelijk patroon van de [11C]PBR28 PET groep-verschillen tussen de SUVR- en VT-analyses, wat aangeeft dat deze analytische technieken een gelijkaardig potentieel hebben om gebieden die neuro-inflammatie vertonen bij FM te detekteren. […] Hoewel we in de huidige studie ook significant positieve correlaties tussen SUVR en VT in meerdere corticale gebieden observeerden, dient te worden opgemerkt dat een verband tussen deze metingen niet consistent werd gezien in de literatuur. Een diepgaander onderzoek naar de relatie tussen SUVR en VT is gerechtvaardigd om deze discrepantie beter te begrijpen.

Er waren meerdere waarschuwingen om in overweging te nemen bij het interpreteren van de resultaten van de huidige studie. In onze analyses implementeerden we een methode [technische uitleg] die wordt bekritiseerd als zijnde vatbaar zijn voor vals-positieven. We waren echter in staat stijgingen van het [11C]PBR28 signaal te tonen onafhankelijk voor elke studie-plaats, wat er op wijst dat het effekt waarschijnlijk het gevolg is van een echt fysiologisch effekt. […] Hoewel we vinden dat deze verkennende benadering gerechtvaardigd is, gezien het de eerste studie is die verhogingen qua TSPO-signaal bij FM toont, dient de klinische betekenis van [11C]PBR28 signaal stijging bij FM verder te worden onderzocht. Verder werden de ACR-gegevens voor alle patiënten van het KI en 2 van het MGH verkregen tijdens de screening maar niet bij de scan. Hoewel scores voor die vragenlijst stabiel zijn over tijd, is het mogelijk dat de scores van sommige patiënten veranderden tussen de screening en de scan. Ten slotte moeten de resultaten van de [11C]-L-deprenyl-D2 analyse omzichtig worden geïnterpreteerd. Belangrijk: de afwezigheid van een significant effekt kan niet worden bestempeld als overtuigend bewijs voor ‘geen verschil’, bijzonderlijk omwille van het klein staal in de huidige studie. Verder analyse met bij grotere groepen zal dus nodig zijn om te bevestigen dat astrocyten geen belangrijke rol spelen bij de pathofysiologie van FM.

Tot besluit: ons werk toont dat de waarden van de gliale merker TSPO, gemeten via [11C]PBR28 PET beeldvorming, in het brein gestegen zijn in de cortex van FM-patiënten t.o.v. gezonde controles. Bovendien vonden we een verband tussen het TSPO PET-signaal en vermoeidheid, een overheersend FM-symptoom. De afwezigheid van verhoogde [11C]-L-deprenyl-D2 binding bij FM kan worden gezien als ondersteuning voor een betrokkenheid van microgliale, eerder dan astrocytische, aktivatie. Toekomstige studies dienen te testen of gliale modulatie een werkbare therapeutische strategie voor FM kan zijn.

Blog op WordPress.com.