M.E.(cvs)-wetenschap

november 19, 2016

Inspanning-geïnduceerde mitochondriale dysfunktie

Filed under: Celbiologie,Inspanning — mewetenschap @ 8:02 am
Tags: , , , , , ,

Onderstaand literatuur-overzicht, geschreven door een professor/arts met een post-graduaat inspanning-geneeskunde -hij is o.a. directeur van het ‘Human Performance Laboratory’ van de univeristeit van Belgrado; zijn research focust op de fysiologische responsen op maximale en sub-maximale inspanning – handelt niet zo zeer over M.E.(cvs) maar geeft o.i. wel aanwijzingen over wat er mogelijks gebeurt in de mitochondrieën wanneer mensen met deze aandoening zich inspannen (oefenen/trainen) in een mate die hun grenzen overschrijdt. Het bevestigt naar onze mening dat oefen-therapie die niet om maat is van de patient wel degelijk nog meer schade kan aanrichten en dus niet is aangewezen. Een duidelijke boodschap naar de dames en heren kine-/fysiotherapeuten! De auteur geeft ook enkele behandel-strategieën mee om schade aan de mitochondrieën te voorkomen/herstellen…

Lees – onder andere – ook: ‘M.E.(cvs) als Mitochondriale Ziekte’, ‘Verder onderzoek van mitochondriale funktie in spieren bij M.E.(cvs)’, ‘Mitochondriale dysfunktie – Differentiërende merker tussen CVS & FM?’, …

————————-

Clinical Science (2016) 130: 1407-16

Exercise-induced mitochondrial dysfunction: A myth or reality?

Sergej M. Ostojic

Faculty of Sport and Physical Education, University of Novi Sad, Serbia School of Medicine, University of Belgrade, Serbia

Samenvatting

De voordelige effekten van lichamelijke aktiviteit op mitochondriale gezondheid – waarbij regelmatige inspanning de kwaliteit en de kwantiteit van de mitochondrieën verbetert in de normale gezonde populatie – zijn goed onderbouwd in de wetenschappelijke literatuur, alsook bij cardiometabole en neurodegeneratieve aandoeningen, en ouder-worden. Meerder studies stelden echter vragen bij dit paradigma, suggererend dat extreem zware of uitputtende inspanning mitochondriale stoornissen bevordert die permanente schade kunnen toebrengen aan de werking ervan bij gezondheid en ziekte. Inspanning-geïnduceerde mitochondriale dysfunktie (‘exercise-induced mitochondrial dysfunction’, EIMD) zou een bepalende factor kunnen zijn voor negatieve gevolgen van uitputtende inspanning, als pathofysiologisch substraat van hart-abnormaliteiten, Chronische Vermoeidheid Syndroom (CVS) of spier-degeneratie. Hier geven we een overzicht van de mogelijke factoren die negatieve effekten van uitputtende inspanning op de mitochondriale funktie en struktuur mediëren, en opperen we alternatieve oplossingen voor het management van EIMD.

Inleiding

Mitochondrieën worden al lang erkend als een sleutel-element van cellulaire levensvatbaarheid; het organel bleek betrokken bij een overvloed aan fundamentele levensprocessen. Het zijn de voornaamste cellulaire energie-bronnen (oxidatieve fosforylatie), belangrijke regulatoren van de redox-produktie en -signalisering, modulatoren van de calcium-homeostase, haem-biosynthese en gebruik van aminozuren, en belangrijke spelers bij de controle van stress-responsen en apoptotische cel-dood. Het behouden van de mitochondriale werking lijkt de belangrijkste determinant te zijn voor een lange levensduur, terwijl een dysfunktie myopathieën, neurodegeneratieve en cardiometabole aandoeningen, kanker en veroudering vergezelt of triggert. Het organel wordt zo een belangrijk doelwit voor verschillende farmacologische en niet-farmacologische interventies om mitochondriale dysfunktie aan te pakken, waarbij inspanning dikwijls gesuggereerd wordt als de te kiezen therapie. Veel studies hebben gerapporteerd over voordelige effekten van lichamelijke inspanning op mitochondriale inhoud en funktie, waarbij regelmatige inspanning tekenen en symptomen van mitochondriale dusfunktie bij veroudering, diabetes en hersen-aandoening verlicht. Meerdere studies stelden echter vraagtekens bij dit paradigma, suggererend dat extreem zware of langdurige inspanning eigenlijk mitochondriale stoornissen zou induceren die de werking permanent zouden aantasten. Een groep van de ‘University of Cape Town Medical School’ rapporteerden over een geval van een klaarblijkelijk gezonde top-atleet die een onomkeerbare mitochondriale dysfunktie ontwikkelde na jaren van uitputtende training. [St Clair Gibson et al. Exercise-induced mitochondrial dysfunction in an elite athlete. Clin. J. Sport Med. (1998) 8: 52-55] Daarnaast suggereerden meerdere studies bij knaagdieren dat uitputtende inspanning een inhibitie van mitochondriale fosforylatie-aktiviteit zou kunnen induceren en moeilijk te herstellen mtDNA-deleties en cel-dood. Het lijkt er op dat inspanning de mitochondriale struktuur en werking sterk aantast, maar toch blijft de richting en de graad van verandering open voor discussie. In dit artikel zal ik mogelijke factoren die de negatieve effekten van inspanning op mitochondriale funktie mediëren bespreken en alternatieve oplossingen voor het managen van inspanning-geïnduceerde mitochondriale schade naar voor brengen.

Voordelige effekten van inspanning op mitochondriale funktie

Eén van de klassieke responsen op inspanning is een verhoogd aantal en betere funktie van mitochondrieën, waarbij een verbeterde kwaliteit en kwantiteit nauw verband houdt met meerdere positieve gezondheid-effekten die worden gerapporteerd na training. Na de voorbijgaande daling qua mitochondriale prestaties die worden gezien onmiddellijk na een inspanning, verhoogt de mitochondriale biogenese – met gunstige veranderingen qua mitochondriaal volume en aantal [na 7 à 10 dagen 2u/dag fiets-training bij gezonde mensen!]. De organellen vermeerderen in grootte en densiteit, het verbruik van mitochondriale brandstof verschuift naar een toegenomen verbruik van lipiden en de capaciteit qua mitochondriale enzymen breidt uit [7 weken uithouding-training door gezonde mensen!]. Bijgevolg verhogen de oxidatieve capaciteit en de inspanning-prestaties. Het lijkt dat regelmatige inspanning een positieve invloed heeft op de expressie van PGC-1α [‘peroxisome proliferator-activated receptor γ coactivator 1-α’; lid van een familie van transcriptie co-aktivatoren die een centrale rol speelt bij de regulering van het cellulair energie-metabolisme], een belangrijke regulator van de mitochondriale biogenese en funktie. Uithouding-training lijkt hiervoor bijzonder doeltreffend: zelfs een enkele aërobe inspanning van 60 min induceert wijzigingen qua gen-expressie die de mitochondrieën in inspannende en niet- inspannende spieren van gezonde mannen positief beïnvloedt. Gunstige mitochondriale aanpassingen na regelmatige inspanningen werden ook gerapporteerd bij patiënten met verschillende aandoeningen [diabetes en Alzheimer’s & Parkinson’s] of ouder-wordenden [4-6 sessies/week van 30-40 min, gedurende 12 weken]. Na regelmatige aërobe inspanning verbetert zelfs de funktie van ernstig beschadigde mitochondrieën [mitochondriale myopathie]. Er is echter veel minder geweten over het dosis-respons verband tussen gunstige mitochondriale veranderingen en de intensiteit/volume inspanning. Meerdere studies brachten zeer intensieve inspanning naar voor als een doeltreffend model voor het verbeteren van de mitochondriale biogenese en funktie. Aan de andere kant rapporteerde een studie dat PGC-1α mRNA-expressie negatief gecorreleerd was met inspanning-intensiteit [Mille-Hamard L et al. Transcriptional modulation of mitochondria biogenesis pathway at and above critical speed in mice. Mol. Cell. (2015) Biochem. 405: 223-232], wat suggereert dat de transcriptie-aktiviteit van de mitochondriale biogenese signalisering-cascade gevoelig is voor inspanning-intensiteit. Optimalisatie van de inspanning-belasting kan van cruciaal belang zijn voor specifieke mitochondriale aanpassingen, maar of verschillende intensiteiten biologisch verschillende mechanismen betrokken bij ‘acclimatisatie aan inspanning’ opleveren, blijft momenteel nog onbekend.

Mitochondriale dysfunktie geïnduceerd door inspanning

De term ‘dysfunktionele mitochondrieën’ wordt veel gebruikt in de cel-biologie, bio-energetische research en klinische geneeskunde. De precieze definitie is echter nogal moeilijk, en hangt af van het feit of dysfunktie bepaald dient te worden via geïsoleerde organellen, intacte cellen of in vivo, en welke biomerkers (klinische of experimentele) beschikbaar zijn voor de beoordeling van mitochondriale prestaties. Gewoonlijk wordt mitochondriale dysfunktie gedefinieerd als een verstoord vermogen van de mitochondrieën om ATP – de belangrijkste energie-drager in de cel – aan te maken, op de juiste manier in respons op energie-behoeften, hoewel abnormaliteit bij andere processen die worden bestuurd door mitochondrieën ook mitochondriale dysfunktie kunnen worden genoemd. Diagnostische strategieën voor mitochondriale aandoeningen/dysfunktie vereisen een multi-disciplinaire evaluatie, en steunen op een combinatie van klinische observaties, laboratorium-testen, beeldvorming van de hersenen en skeletspier-biopten, waarbij momenteel niet één enkele ‘golden standard’ test beschikbaar is om de diagnose van mitochondriale dysfunktie te stellen. Mitochondriale dysfunktie treedt vroeg op en werkt oorzakelijk bij veel ziekten en aandoeningen, waarbij meerdere factoren werden geïdentificeerd die de aandoening induceren, en het energie-metabolisme of vorming van vrije radikalen in het lichaam storen [statinen, sertraline, antibiotica]. Het begrijpen van de etiologie zou kunnen helpen bij de identificatie van kwetsbaarheid-eigenschappen en het vermijden van uitlokkende stoffen, inclusief verschillende medicijnen en toxische agentia of andere tegen mitochondrieën gerichte beschadigende interventies. Er is speculatie dat excessieve uithouding-training schadelijk kan zijn voor verscheidene biologische systemen en subcellulaire strukturen [O’Keefe JH et al. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin. Proc. (2012) 87: 587-595], waarbij mitochondriale dysfunktie een rol zou kunnen spelen [Feng Z et al. Mitochondrial dynamic remodeling in strenuous exercise-induced muscle and mitochondrial dysfunction: regulatory effects of hydroxytyrosol. Free Radical Biol. Med. (2011) 50: 1437-1446].

Ernstige modificaties van de mitochondriale struktuur in het myocard [hartspier(weefsel)] van honden onderworpen aan uitputtende inspanning werden al in 1966 gerapporteerd: frequent geobserveerde reuzen-mitochondrieën […] en ontwrichting van de cristae [instulpingen van het binnenste membraan in een mitochondrium]. De jaren daarna evalueerden andere onderzoekers de fijne struktuur van hart- en skeletspier na uitputtende inspanning in een reeks studies uitgevoerd bij ratten en mensen. De auteurs rapporteerden mitochondriale zwelling bij de ratten die ca. 450 h waren onderworpen aan uitputtend zwemmen, waarbij de veranderingen grotendeels normaliseerden door een herstel-periode van 15-18 h. Enkele mitochondrieën waren echter erg gezwollen en hadden verstoorde en gedegenereerde cristae (het meest prominent in myocardiale mitochondrieën), waarbij de metabole capaciteit van de dysfunktionele organellen op een nadelige manier leek te zijn veranderd na langdurige ernstige inspanning. Deze observaties suggereren dat uitputtende inspanning de mitochondriale funktie en/of struktuur sterk kan aantasten, ten minste in een bepaald gebied of weefsel. Anderen [Gohil K et al. Effects of training and exhaustive exercise on the mitochondrial oxidative capacity of brown adipose tissue. Biosci. Rep. (1984) 4: 987-993] bevestigden bovenstaande bevindingen: ze rapporteerden een inspanning-geïnduceerde afname van de mitochondriale aktiviteit in bruin vet-weefsel [vet-cellen met een grote hoeveelheid mitochondrieën] van ratten onderworpen aan een slopende loop-test, waarbij mitochondriale oxidatieve mechanismen meer gestresseerd waren bij ongetrainde ratten t.o.v. getrainde. De laatste 20 jaar rapporteerden meerdere studies gelijkaardige schadelijke effekten van extreem zware inspanning op mitochondriale prestaties, met permanente of langdurige inspanning-geïnduceerde mitochondriale dysfunktie (EIMD) die werd gevonden in de hersenen, skeletspieren, hart, lever en bloedcellen van knaagdieren en mensen [Bijvoorbeeld: Rasmussen UF et al. The effect of high-intensity exhaustive exercise studied in isolated mitochondria from human skeletal muscle. Pflugers Arch. (2001) 443: 180-187 /// Hsu TG et al. Leukocyte mitochondria alterations after aerobic exercise in trained human subjects. Med. Sci. Sports Exerc. (2002) 34: 438-442 /// Tuan TC et al. Deleterious effects of short-term, high-intensity exercise on immune function: evidence from leucocyte mitochondrial alterations and apoptosis. Br. J. Sports Med. (2008) 42: 11-15 /// Layec G et al. Impact of age on exercise-induced ATP supply during supramaximal plantar flexion in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. (2015) 309: R378-R388 /// Layec G et al. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans. NMR Biomed. (2013) 26: 1403-1411].

Uitputtende inspanning lijkt verschillende merkers voor mitochondriale gezondheid negatief te beïnvloeden, inclusief een verstoring van de aktiviteit en/of expressie van mitochondriale enzymen (cyclo-oxygenase, citraat-synthase, malondialdehyde), met mitochondrieën gerelateerde groei-factoren (PGC-1α, MAP (‘mitogen-activated protein’) -kinase [reageert op extracellulaire stimuli (mitogenen) en reguleert verscheidene cellulaire aktiviteiten, zoals gen-expressie, celdeling, differentiatie en cel-overleving/apoptose], BDNF), meer mtDNA-deleties [ontbrekende stukken in het mitochondriaal DNA], expressie van mitochondriale apoptotische factoren (DRPs [‘dynamin-related proteins’; betrokken bij mitochondriale splitsing], transcriptie-factor A [aktivator van mtDNA-transcriptie, verpakt mtDNA in DNA/proteïne-aggregaten (mitochondriale nucleoïden)]), een daling van het mitochondriaal membraan-potentiaal (ΔΨmt [het spanning-verschil tussen het buitenste en binnenste membraan]) en verhoogde aanmaak van mitochondriale reaktieve oxidatieve soorten (ROS). Anderzijds is het moeilijk om meerdere biomerkers voor de mitochondriale funktie in studies bij mensen te interpreteren: een daling qua leucocyten mitochondriaal trifunktioneel proteïne (mtMTP [enzyme op het binnenste mitochondriaal membraan dat 3 van de 4 stappen van de vetzuur-afbraak katalyseert]) of een toename van het NAD(P)H-oxidase [katalyseert de produktie van super-oxide] systeem van spier-mitochondrieën duidt niet noodzakelijk op mitochondriale schade na uitputtende inspanning. Tenslotte induceert een krachtige inspanning ernstige ultrastrukturele veranderingen in het organel, inclusief een onevenwichtige mitochondriale distributie […], en een hoge prevalentie van grote en gezwollen mitochondrieën met dense matrixen en ruwe of abnormale cristae. EIMD komt voor bij zowel mannen als vrouwen die verschillende vormen van inspanning tot uitputting krijgen te verwerken (bv. lopen, fietsen, zwemmen), bij zowel acute als chronische inspanning-modellen. Er zijn momenteel geen duidelijke richtlijnen betreffende diagnostische criteria voor EIMD. Het lijkt er op dat de ernst (en geïmpliceerde onomkeerbaarheid) van dit fenomeen een belangrijk aspect is dat zou moeten worden aangewend om het onderscheid te maken tussen voorbijgaande afname qua mitochondriale prestaties en ernstiger EIMD. Dit kan verband houden met cruciale veranderingen in het mtDNA of nucleair DNA (nDNA) (bv. grote deleties geïnduceerd door uitputtende inspanning) die de gen-expressie op het niveau van de transcriptie en/of translatie permanent wijzigen. Een extreme produktie van mitochondriale ROS en stikstof-soorten tijdens uitputtende inspanning lijkt inspanning-gerelateerde DNA-schade te induceren [Neubauer O et al. Exercise-induced DNA damage: is there a relationship with inflammatory responses? Exerc. Immunol. Rev. (2008) 14: 51-72], wat mtDNA bijzonder vatbaar maakt voor oxidatieve stress en een pathofysiologisch doelwit voor EIMD. mtDNA lijkt een veel hogere mutatie-graad te hebben in vergelijking met nDNA, aangezien het makkelijk wordt blootgesteld aan ROS-schade terwijl de beschermende histonen [histoon-proteïnen = kleine eiwitten met een hoog aantal positief geladen aminozuren die aan negatief geladen DNA binden; een nucleosoom is een complex van DNA en histoon-eiwitten dat de gen-expressie regelt] en andere DNA-herstel-mechanismen ontbreken. Daarom zou het monitoren van mtDNA-deleties in specifieke gebieden […] en wijzigingen in genetische profielen na inspanning (d.m.v. ‘hoge-resolutie digitale profilering’) kunnen worden gebruikt als nieuw instrument om de ernst en de progressie van EIMD te evalueren. Hoewel ROS-gemedieerde mtDNA-wijzigingen EIMD kunnen induceren, zouden ook andere mechanismen verantwoordelijk kunnen zijn. […]

Verhoogde produktie van ROS en reaktieve stikstof-soorten (RNS) tijdens lichamelijke inspanning treedt op ten gevolge zuurstof-afhankelijke bio-energetica in de mitochondrieën, waarbij de elektronen-transport-keten en mitochondriale xanthine-oxidase [ROS-genererend enzyme] aktiviteit de voornaamste bronnen zijn. Een andere inspanning-gerelateerde bron van ROS is de inflammatoire respons op weefsel-letsels (zoals die worden geïnduceerd door achteréénvolgende spier-contracties) met aktivatie van neutrofielen en macrofagen-infiltratie. Hyperthermie, dehydratatie en osmotische stress werden ook geïdentificeerd als onconventionele bronnen van ROS gegenereerd tijdens inspanning, waarbij de effekten van inspanning op ROS-produktie intensiteit-afhankelijk lijkt te zijn. Hoewel matige inspanning de mitochondrieën-gerelateerde ROS-aanmaak in evenwicht blijkt te houden en gunstige ROS-geassocieerde aanpassingen induceert, stimuleert uitputtende of langdurige inspanning een over-produktie van ROS. Vandaar: te veel ROS kan subcellulaire bio-molekulen, zoals lipiden, proteïnen & DNA beschadigen [Powers SK & Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev. (2008) 88: 1243-1276], en de mitochondriale funktie erg in gevaar brengen, leidend tot EIMD.

Hoewel EIMD bij alle leeftijden voorkomt, lijkt het er op dat een gevorderde leeftijd een voorbestemmende factor kan zijn voor EIMD. Ouder-worden per se induceert diepgaande veranderingen qua mitochondriale vorm en funktie, inclusief DNA-deleties, verhoogde oxidatieve stress en verstoorde mitochondriale bio-energetica. Bij blootstelling aan krachtige inspanning, lijkt het dat oudere individuen makkelijker mitochondriale dysfunktie en versneld verval ontwikkelen. Onderzoekers evalueerden de effekten van zware inspanning in skeletspieren van muizen van 2 maand (jonge groep) en 24 maand (oude groep), onderworpen aan 5 dagen inspanning (rennen in een gemotoriseerde loopband tot uitputting). Deze uitputtende inspanning resulteerde bij oudere muizen in een daling van zowel fusie- en splitsing- (respectievelijk mitofusine-2 & DNM1L) proteïnen [mitochondrieën ondergaan verlenging, fusie en splitsing; wat de recyclage van membranen toelaat en het herwinnen van onbeschadigd mtDNA om de mitochondriale funktie te behouden] die zouden kunnen bijdragen tot wijziging van mitochondriale morfologie, en verminderde PGC-1α nucleaire translocatie [verplaatsing naar de cel-kern]. Verder was er een 69% toename qua interleukine-1β (een belangrijke mediator van de inflammatoire respons) in de oude groep, terwijl uitputtende inspanning deze biomerker niet beïnvloedde in jonge muizen. De auteurs concludeerden dat uitputtende inspanning in verouderende spieren mitochondriale schade verergert en dat het een ongeschikte manier van inspannen is voor het behandelen van veroudering en ouderdom-gerelateerde mitochondriale ziekten.

Een andere factor die de vatbaarheid voor EIMD zou kunnen bepalen, is de voorafgaande training-status. EIMD treft zowel getrainde als ongetrainde individuen maar toch lijkt dit fenomeen frequenter bij over-getrainde mensen, wat een dosis-respons voor EIMD suggereert. Herhaalde blootstelling aan extreem zware of langdurige inspanning-aktiviteit kan bij vatbare individuen mitochondriale schade induceren die met verloop van tijd accumuleert, en uiteindelijk chronisch wordt en niet meer te herstellen, met lange-termijn implicaties voor inspanning-prestaties en gezondheid [St Clair Gibson A et al. Chronic exercise activity and the fatigued athlete myopathic syndrome (FAMS). Int. SportMed. J. (2000) 1: 1-7]. Er werd tot hier toe echter geen duidelijke blootstelling-respons verband tussen uitputtende inspanning-belasting (bv. frequentie, intensiteit, duur en type inspanning) en EIMD beschreven. Inspanning-intensiteit zou echter een cruciale rol kunnen spelen bij de etiolgie van EIMD, aangezien de expressie van het stress-proteïne ‘heat-shock’ proteïne (Hsp70) – dat de mitochondriale funktie mee reguleert – afhankelijk is van inspanning-intensiteit [Milne KJ & Noble EG. Exercise-induced elevation of Hsp70 is intensity dependent. J. Appl. Physiol. (2002) 93, 561-568]. Tenslotte blijkt EIMD weefsel-specifieke responsen te vertonen, waarbij myocardiale mitochondrieën het meest te lijden hebben van uitputtende inspanning, in vergelijking met die van de de hersenen, lever of skeletspieren. Dit zou te wijten kunnen zijn aan het hoger zuurstof-verbruik per milligram proteïnen in hart-mitochondrieën en de daaruitvolgende hyper-produktie van organel-beschadigende ROS.

Mogelijke gevolgen van EIMD voor de gezondheid

Hoewel regelmatige fysieke aktiviteit gezondheid-risico’s voor vele ziekten vermindert, hebben studies gedocumenteerd dat uitputtende inspanning – zelfs bij gezonde individuen – een waaier aan gevaren voor de gezondheid oplevert; een feit dat bezorgdheid opwekte omtrent de schadelijke gevolgen van dergelijke inspanning. Naast andere mogelijke factoren, zou EIMD een belangrijke factor kunnen zijn voor de negatieve resultaten van uitputtende inspanning, omwille van het feit dat het een pathofysiologisch substraat is voor hart-abnormaliteiten, chronische vermoeidheid en over-training syndroom of spier-degeneratie. Er werd [bij ratten] aangetoond dat belastende inspanning biochemische veranderingen in myocardiale mitochondrieën (bv. verminderde mitochondriale accumulatie van Ca2+) kan opleveren die de hart-funktie nadelig kan beïnvloeden na opéénvolgende uitputtende inspanningen. Anderen vonden opgezwollen mitochondrieën in cardiomyocyten van uitgeputte ratten, met mogelijke hart-ritme-verstorende veranderingen […]. Chinese researchers evalueerden door inspanning geïnduceerde hart-letsels bij ratten na herhaalde uitputtende inspanning. Er werd ook geschreven over significante mitochondriale veranderingen, vergezeld door ischemische wijzigingen, cellulaire schade aan het cytoskeleton en ‘gap-junctions’ [eiwit-kanalen die het cytoplasma van naburige cellen met elkaar verbinden, waardoor ionen en ‘boodschapper-molekulen’ kunnen stromen], en weefsel-fibrose in het cardiaal geleiding-systeem, waarbij de mitochondriale stoornissen hart-ritme-stoornissen induceren. Er werd ook gerapporteerd over dysfunktionele mitochondrieën-gerelateerde cardiale stress bij ratten die werden gedwongen 3 h te zwemmen, inclusief een ontregeling van het matrix metalloproteinase-systeem [matrix-metalloproteïnasen of MMPs zijn enzymen die in staat zijn de extracellulaire matrix (bindweefsel) af te breken], verhoogde nitro-oxidatieve stress en sporadische fragmentatie van de myocard-struktuur. Klinisch relevante stoornissen van de haemodynamiek (bv. verhoogd eind-systolisch volume, verminderde ejectie-fractie, gestoorde samentrekbaarheid en mechano-energetica van het linker-ventrikel na inspanning) gingen samen met histologische veranderingen. Er zijn ons geen studies bij mensen bekend die EIMD linken met cardiale dysfunktie maar sommige hart-ritme-stoornissen bij atleten zouden een mitochondriale oorsprong kunnen hebben en op mitochondrieën gerichte anti-oxidanten kunnen een nieuwe anti-arythmische behandeling zijn [Yang KC et al. Mitochondria and arrhythmias. Free Radical Biol. Med. (2014) 71: 351-361].

Chronische Vermoeidheid Syndroom (CVS), een complexe medische aandoening met aanhoudende post-exertionele malaise, wijdverspreide musculoskeletale pijn, en mentale en fysieke uitputting die niet substantieel verbetert door rust, is een aandoening met onbekende etiologie, die wereldwijd tot 5% van de algemene bevolking treft. Meerdere studies suggereren dat mitochondriale dysfunktie betrokken is bij de pathofysiologie van CVS [Myhill S, Booth NE & McLaren-Howard J]. Daarnaast kan langdurige zware inspanning CVS induceren bij atleten of uitputting aanzwengelen bij CVS-patiënten [Staud R et al. Evidence for sensitized fatigue pathways in patients with Chronic Fatigue Syndrome. Pain (2015) 156: 750-759], wat suggereert dat EIMD een co-factor zou kunnen zijn die CVS triggert. Over-training is een andere aandoening die gerelateerd kan zijn met EIMD. Over-training wordt gewoonlijk beschreven als een langdurige excessieve belasting met ontoereikend herstel die gepaard gaat met verminderde prestaties. De diagnose blijft moeilijk te stellen en omwille van de ongekende oorzaak zo ook het management. Een bepalend artikel door St Clair Gibson et al. [zie hierboven] beschreef meerdere gevallen van mitochondriale pathologie in schijnbaar gezonde maar over-trainde top-atleten, met schadelijke veranderingen qua skeletspier-struktuur en -funktie geassocieerd met vele jaren excessieve training en competitie. De auteurs suggereerden dat de spier-regeneratie na uitputtende inspanning wel eens niet eindig zou kunnen zijn en dat die, wanneer die wordt overschreden, over-training en verslechtering van de atletische prestaties initieert. Anderen [Wang X et al. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: preventative effect of hydroxytyrosol acetate. Cell Death Dis. (2014) 5, e1521] suggereerden daarom ook dat mitochondriale dysfunktie kan bijdragen tot de ontwikkeling van spier-aandoeningen, inclusief wegkwijnen van spieren, spier-atrofie en -degeneratie. Vorming van ROS en oxidatieve stress in de skeletspieren zijn cruciaal voor mitochondriale dysfunktie die wordt gekenmerkt door downregulering van OPA1 (een belangrijk proteïne bij de regulering van fusie en her-modelering van het mitochondriaal binnenste membraan) en verlies van myosine zware-keten proteïne [‘myosin heavy chains’, MyHC; van belang bij spier-samentrekking], dat uiteindelijk leidt tot significante morfologie-wijzigingen in myotubes [zich ontwikkelende skelet-spier-vezels] en spiercel-degeneratie. De rol van mitochondrieën bij spier-beschadigende inspanning werd bevestigd via een andere proef [zie Feng Z et al. hierboven] – waarbij door krachtige inspanning geïnduceerde spier-dysfunktie gepaard ging met verhoogde mitochondriale splitsing, gestegen merkers voor spier-atrofie […] en cel-autofagie triggerede. Interessant is dat in deze studie meer mitochondriale splisting in beschadigde myocyten na zware inspanning (geëvalueerd via een toename van DRP1 [‘dynamin-related protein 1’, enzyme dat zorgt voor de splisting in 2 dochter-mitochondrieën]) gelijkaardig was met de DRP1-respons in skeletspieren na een dieet met een hoog vet-gehalte [muizen], wat misschien suggestief is voor een gelijkaardig mechanisme van mitochondriale dysfunktie in een inspanning-geïnduceerd model en obesitas. Ondanks het beperkt begrip aangaande mechanismen verantwoordelijk voor met mitochondrieën gerelateerde spier-aandoeningen, zou EIMD echter verder moeten worden onderzocht als een mogelijk pathogene factor voor myocyten-schade in vivo. Hoewel EIMD meer voorkomt in skeletspieren, rapporteerden andere onderzoekers dat uitputtende inspanning ook mitochondriale dysfunktie in de hersenen bevordert [bij muizen], waarschijnlijk omwille van inspanning-geïnduceerde inhibitie van de BDNF-produktie in de frontale cortex. Dit kan de cognitieve stoornissen verklaren die worden gezien bij CVS en over-training syndroom. Er zijn echter meer studies nodig om een link tussen EIMD en gevolgen voor de gezondheid van uitputtende inspanning bij atleten en de klinische populaties op lange-termijn vast te stellen.

Management-strategieën voor EIMD

Naast inspanning-interventies, die waarschijnlijk het sleutel-element vertegenwoordigen bij de preventie van en het omgaan met dysfunktionele mitochondrieën, kunnen wellicht meerdere op mitochondrieën gerichte agentia worden overwogen om EIMD te overwinnen of minstens te verminderen. Het ondersteunen van mitochondriale bio-energetica en het helpen herstellen van mtDNA na uitputtende inspanning, en het behouden van een hoog anti-oxidant vermogen om toxische ROS in het organel op te ruimen, zijn mogelijke behandel-opties voor mitochondriale dysfunktie geïnduceerd door extreem zware of langdurige inspanning. Anti-oxidanten en verwante ‘nutraceuticals’ worden alom besproken in de klinische en voeding-literatuur. Er zijn echter slechts een beperkt aantal studies die de doeltreffendheid van op mitochondrieën gerichte interventies bij EIMD evalueerden d.m.v. organel-specifieke biomerkers. De beschermende effekten van salidroside, een molekule uit de plant Rhodiola rosea op mitochondriale dysfunktie en cardiomyocyten-beschadiging (geïnduceerd door een uitputtend zwem-inspanning) bij ratten werd gëevalueerd. Toediening van salidroside (100-300 mg/kg per dag gedurende 2 weken) verminderde myocard-letsels en ultrastrukturele mitochondriale misvormingen, bewaarde de mitochondriale respiratoire funktie, en ging onaangepaste gen-expressie van PGC-1α en nucleaire respiratoire factoren (NRF-1 & NRF-2) [regelen cel-groei en nucleaire genen die vereist zijn voor de cellurlaire ademhaling] tegen, vergeleken met de controle-groep die een placebo kreeg. In een andere studie rapporteerden over de beschermende effekten van hydroxytyrosol, een natuurlijk polyfenol uit olijven, bij spier- en mitochondriale dysfunktie (geïnduceerd door krachtige inspanning) in ratten. Behandeling met hydroxytyrosol (25 mg/kg per dag gedurende 8 weken) inhibeerde de toename van autofagie en mitochondriale splitsing, en de afname van PGC-1α expressie geïnduceerd door excessieve inspanning. Daarnaast versterkte hydroxytyrosol mitochondriale fusie en aktiviteiten van mitochondriaal complex-I & -II. Een studie onderzocht de effekten van Galdieria sulphuraria microalgen op EIMD opgewekt door acute krachtige inspanning (6 h zwemmen) bij ratten. Behandeling met G. sulphuraria (10 g/kg per dag gedurende 10 dagen) verminderde de door inspanning toegenomen protiëne-carbonyl inhoud, een indicator voor oxidatieve schade, in mitochondrieën van het hart en de spieren van ratten na zware inspanning. Daarnaast werden gunstige effekten gerapporteerd van oraal quercetine (100 mg/kg per dag gedurende 4 weken) op myocardiale mitochondriale oxidatieve stress en dysfunktie bij muizen onderworpen aan zware inspanning; waarschijnlijk door z’n anti-oxidatief effekt en aconitase [enzyme dat citraat naar isocitraat omzet; inhibitie ervan vermindert de cellulaire energie-voorraad] -aktivatie, wat een beloftevolle strategie voor EIMD door dit natuurlijk flavonoïd benadrukt. Een Chinees team meldde gunstige effekten van een mitochondriale cocktail van nutriënten (α-liponzuur, acetyl-L-carnitine, biotine, nicotinamide, riboflavine, pyridoxine, creatine, coenzyme-Q10, resveratrol & taurine) op de mitochondriale gezondheid bij ratten na uitputtende inspanning. Supplementering met nutriënten verhoogde de proteïnen-expressie van mitochondriaal complex-I, -II & -III, mtDNA-aantal en transcriptie-factoren betrokken bij mitochondriale biogenese en funktie in skeletspieren. Dezelfde groep rapporteerde gelijkaardige resultaten met een combinatie van nutriënten gericht op mitochondrieën (α-liponzuur, creatine, B-vitaminen, polyfenolen) die verbetering van complex-V en aktiviteit van een FAD-bindend flavoproteïne enzyme brachten, en versterking van de aktiviteiten van complex-I & -IV in lever-mitochondrieën van ratten die gedurende 4-weken werden onderworpen aan krachtige inspanning. Deze 2 studies suggereren dat supplementering met een multi-component nutriënten-preparaat EIMD kan verminderen, hoewel de bijdrage van elk nutrient onbekend blijft. Aan de andere kant rapporteerden bleek een L-arginine-rijk dieet (2%) geen significante impact te hebben op courante mtDNA-deleties in spier- en lever-mitochondrieën van ratten na uitputtende inspanning. Er zijn geen studies beschikbaar betreffende andere op mitochondrieën gerichte nutraceuticals bij EIMD, inclusief kleine anti-oxidante molekulen (bv. mitoquinon [MitoQ of MitoQ10], mito-tocopherol [MitoVitE; “beschermt mitochondrieën tegen oxidatieve stress via inhibitie van lipiden-peroxidatie”], mito-apocynin [Mito-Apo; “beschermt tegen oxidatieve schade en glia-gemedieerde inflammatie”]) en molekulaire waterstof, die werden ontworpen om zich op te stapelen in de mitochondrieën in vivo [Ostojic SM. Targeting molecular hydrogen to mitochondria: barriers and gateways. Pharmacol. Res. (2015) 94, 51-53]. Daarom zijn verdere studies vereist om alle op mitochondrieën gerichte interventies voor EIMD – inclusief nieuwe behandelingen (bv. ketogeen dieet, sirtuinen [klasse van HDACs – histoon-deacetylasen, enzymen die acetyl-groepen (O=C-CH3) verwijderen; van belang bij de vertaling van RNA], protopanaxadiol [molekule uit ginseng]) [Rai PK et al. Potential compounds for the treatment of mitochondrial disease. Br. Med. Bull. (2015) 116: 5-18] – te evalueren.

Een ander controversieel aspect van het eventueel gebruik van anti-oxidanten bij EIMD dient ook te worden besproken. Er is steeds meer bewijsmateriaal dat eerder schadelijke effekten van supplementering met anti-oxidanten bij training suggereert, waarbij een hoge dosis anti-oxidanten nadelig zou kunnen interfereren met belangrijke door ROS gemedieerde fysiologische processen (zoals proteïne-signalisering, mitochondriale biogenese of vasodilatie. Er werden negatieve uitkomsten van supplementering met anti-oxidanten gevonden bij fietsers, trialeten, marathon-loper, kayakers en ongetrainde individuen die verschillende anti-oxidanten – zowel water- als vet-oplosbare – kregen toegediend. Aangezien het potentieel voor langdurende schade van supplementering met anti-oxidanten bestaat, dient het gebruik van hoge dosissen anti-oxidanten bij EIMD misschien te worden beperkt tot dat er ‘evidence-based’ richtlijnen zijn.

Besluit

Mitochondrieën kunnen zichzelf doeltreffend beschermen tegen de accumulatie van externe en interne stress via verscheidene mechanismen. Wanneer de bescherming-mechanismen echter uitgeput raken door of gewijzigd omwille van repetitieve herhaalde inspanning en onvoldoende herstel na inspanning, kan EIMD ontstaan. Hoewel er geen studie bestaat die de mitochondriale gezondheid (en herstel na inspanning) op lange termijn volgde na één enkele sessie uitputtende inspanning, is het zeer onwaarschijnlijk dat één enkelvoudige inspanning tot onherstelbare mitochondriale stoornissen leidt – ten minste bij ongetrainde individuen. Frequente uitputtende inspanningen laten mitochondrieën echter misschien wel niet toe zich volledig te herstellen van inspanning-stress, en ernstige DNA-deleties en ultrastrukturele schade (voornaamste merkers voor EIMD) te repareren. Hypothetisch gezien kan uitputtende inspanning een regelmatige mitochondriale levenscyclus – bestaande uit ca. 5 fusie/splitsing-cycli per uur per mitochondrion – in gevaar brengen, leidend tot langdurige slechte mitochondriale prestaties en gevolgen voor de gezondheid. Dit literatuur-overzicht identificeerde mogelijke verbanden tussen uitputtende inspanning en mitochondriale dysfunktie bij mensen; de bevindingen waren echter beperkt tot ‘cross-sectionele’ studies [analyse van gegevens van een populatie op één specifiek tijdstip] (geen longitudinale effekt-studies), waarbij de definitie van uitputtende inspanning soms onduidelijk is. Er zijn in vivo inspanning-studies nodig bij klinische en atletische populaties die de drempel – die moet worden overschreden om het organel onomkeerbaar te beschadigen – beschrijven.

Klinische Perspectieven

Extreem zware of uitputtende inspanning bevordert mitochondriale stoornissen die de werking ervan permanent kunnen beschadigen. Inspanning-geïnduceerde mitochondriale dysfunktie kan een belangrijke factor zijn voor hart-abnormaliteiten, chronische vermoeidheid en over-training syndroom, of spier-degeneratie bij atleten. Het ondersteunen van mitochondriale bio-energetica en het helpen om mitochondriaal DNA te herstellen na uitputtende inspanning, en het behouden van een optimaal anti-oxidant vermogen om toxische reaktieve zuurstof-soorten in het organel op te ruimen, omvat mogelijke behandel-opties voor inspanning-geïnduceerde mitochondriale dysfunktie.

Geef een reactie »

Nog geen reacties

RSS feed for comments on this post. TrackBack URI

Geef een reactie

Vul je gegevens in of klik op een icoon om in te loggen.

WordPress.com logo

Je reageert onder je WordPress.com account. Log uit / Bijwerken )

Twitter-afbeelding

Je reageert onder je Twitter account. Log uit / Bijwerken )

Facebook foto

Je reageert onder je Facebook account. Log uit / Bijwerken )

Google+ photo

Je reageert onder je Google+ account. Log uit / Bijwerken )

Verbinden met %s

Maak een gratis website of blog op WordPress.com.

%d bloggers op de volgende wijze: